Adaptive K-Means Clustering
نویسنده
چکیده
Clustering is used to organize data for efficient retrieval. One of the problems in clustering is the identification of clusters in given data. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent the clusters well. A large area of research in clustering has focused on improving the clustering process such that the clusters are not dependent on the initial identification of cluster representation. In this paper, I advance an adaptive technique that grows the clusters without regard to initial selection of cluster representation. As such, the technique can identify K clusters in an input data set by merging existing clusters and by creating new ones while keeping the number of clusters constant. The technique has been used to achieve an impressive speedup of a search process when other efficient search techniques may not be available.
منابع مشابه
Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform
Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...
متن کاملOptimization and design of Adaptive Neuro-Fuzzy Inference System using Particle Swarm Optimization and Fuzzy C-Means Clustering to predict the scour after bucket spillway
Additionally, if the materials at downstream of bucket spillway are erodible, the ogee spillway is likely to overturn by the time. Therefore, the prediction of the scour after bucket spillway is pretty important. In this study, the scour depths at downstream of bucket spillway are modeled using a new meta-heuristic model. This model is developed by combination of the Adaptive Neuro-Fuzzy Infere...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کامل